442 research outputs found

    Charles and Gertrude Armitage to Mr. Meredith (8 October 1962)

    Get PDF
    https://egrove.olemiss.edu/mercorr_pro/2060/thumbnail.jp

    'Mr. Keats'

    Get PDF
    Full exploration of the implications of the surgical episode involving 'Mr Keats, one of the Surgeons belonging to Guy's Hospital' in March-April 1816.PostprintPeer reviewe

    Period derivative of the M15 X-ray Binary AC211/X2127+119

    Full text link
    We have combined Rossi X-ray Timing Explorer observations of X2127+119, the low-mass X-ray binary in the globular cluster M15, with archival X-ray lightcurves to study the stability of the 17.1 hr orbital period. We find that the data cannot be fit by the Ilovaisky (1993) ephemeris, and requires either a 7sigma change to the period or a period derivative Pdot/P~9x10e-7 per year. Given its remarkably low L_X/L_opt such a Pdot lends support to models that require super-Eddington mass transfer in a q~1 binary.Comment: 11 pages, 3 figures, to be published in New Astronom

    The Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. II. The Effect of the Radial Gas Pressure Gradient

    Full text link
    The streaming instability concentrates solid particles in protoplanetary disks, leading to gravitational collapse into planetesimals. Despite its key role in producing particle clumping and determining critical length scales in the instability's linear regime, the influence of the disk's radial pressure gradient on planetesimal properties has not been examined in detail. Here, we use streaming instability simulations that include particle self-gravity to study how the planetesimal initial mass function depends on the radial pressure gradient. Fitting our results to a power-law, dN/dMpMpp{\rm d}N / {\rm d}M_p \propto M_p^{-p}, we find a single value p1.6p \approx 1.6 describes simulations in which the pressure gradient varies by 2\gtrsim 2. An exponentially truncated power-law provides a significantly better fit, with a low mass slope of p1.3p^\prime \approx 1.3 that weakly depends on the pressure gradient. The characteristic truncation mass is found to be MG=4π5G2Σp3/Ω4\sim M_G = 4 \pi^5 G^2 \Sigma_p^3 / \Omega^4. We exclude the cubic dependence of the characteristic mass with pressure gradient suggested by linear considerations, finding instead a linear scaling. These results strengthen the case for a streaming-derived initial mass function that depends at most weakly on the aerodynamic properties of the disk and participating solids. A simulation initialized with zero pressure gradient---which is {\em not} subject to the streaming instability---also yields a top-heavy mass function but with modest evidence for a different shape. We discuss the consistency of the theoretically predicted mass function with observations of Kuiper Belt planetesimals, and describe implications for models of early stage planet formation..Comment: 18 pages, 10 figures, 3 tables, accepted to Ap

    Phase-resolved optical and X-ray spectroscopy of low-mass X-ray binary X1822-371

    Get PDF
    (Abridged) X1822-371 is the prototypical accretion disc corona X-ray source, a low-mass X-ray binary viewed at very high inclination, thereby allowing the disc structure and extended disc coronal regions to be visible. We study the structure of the accretion disc in X1822-371 by modelling the phase-resolved spectra both in optical and X-ray regime. We analyse high time resolution optical ESO/VLT spectra of X1822-371 to study the variability in the emission line profiles. In addition, we use data from XMM-Newton space observatory to study phase-resolved as well as high resolution X-ray spectra. We apply the Doppler tomography technique to reconstruct a map of the optical emission distribution in the system. We fit multi-component models to the X-ray spectra. We find that our results from both the optical and X-ray analysis can be explained with a model where the accretion disc has a thick rim in the region where the accretion stream impacts the disc. The behaviour of the H_beta line complex implies that some of the accreting matter creates an outburst around the accretion stream impact location and that the resulting outflow of matter moves both away from the accretion disc and towards the centre of the disc. Such behaviour can be explained by an almost isotropic outflow of matter from the accretion stream impact region. The optical emission lines of HeII 4686 and 5411 show double peaked profiles, typical for an accretion disc at high inclination. However, their velocities are slower than expected for an accretion disc in a system like X1822-371. This, combined with the fact that the HeII emission lines do not get eclipsed during the partial eclipse in the continuum, suggests that the line emission does not originate in the orbital plane and is more likely to come from above the accretion disc, for example the accretion disc wind.Comment: 10 pages, 13 figures, accepted for publication in A&

    Buried hurricane legacies: increased nutrient limitation and decreased root biomass in coastal wetlands

    Get PDF
    Plant identity and cover in coastal wetlands is changing in worldwide, and many subtropical salt marshes dominated by low-stature herbaceous species are becoming woody mangroves. Yet, how changes affect coastal soil biogeochemical processes and belowground biomass before and after storms is uncertain. We experimentally manipulated the percent mangrove cover (Avicennia germinans) in 3 × 3 m cells embedded in 10 plots (24 × 42 m) comprising a gradient of marsh (e.g., Spartina alterniflora, Batis maritima) and mangrove cover in Texas, USA. Hurricane Harvey made direct landfall over our site on 25 August 2017, providing a unique opportunity to test how plant composition mitigates hurricane effects on surface sediment accretion, soil chemistry (carbon, C; nitrogen, N; phosphorus, P; and sulfur, S), and root biomass. Data were collected before (2013 and 2016), one-month after (2017), and one-year after (2018) Hurricane Harvey crossed the area, allowing us to measure stocks before and after the hurricane. The accretion depth was higher in fringe compared with interior cells of plots, more variable in cells dominated by marsh than mangrove, and declined with increasing plot-scale mangrove cover. The concentrations of P and δ34S in storm-driven accreted surface sediments, and the concentrations of N, P, S, and δ34S in underlying soils (0–30 cm), decreased post-hurricane, whereas the C concentrations in both compartments were unchanged. Root biomass in both marsh and mangrove cells was reduced by 80% in 2017 compared with previous dates and remained reduced in 2018. Post-hurricane loss of root biomass in plots correlated with enhanced nutrient limitation. Total sulfide accumulation as indicated by δ34S, increased nutrient limitation, and decreased root biomass of both marshes and mangroves after hurricanes may affect ecosystem function and increase vulnerability in coastal wetlands to subsequent disturbances. Understanding how changes in plant composition in coastal ecosystems affects responses to hurricane disturbances is needed to assess coastal vulnerability

    Relating spin-polarized STM imaging and inelastic neutron scattering in the van-der-Waals ferromagnet Fe3GeTe2

    Get PDF
    C.T. and P.W. acknowledge funding through Grants No. EP/R031924/1 and No. EP/T031441/1, L.C.R. through the Royal Commission for the Exhibition of 1851, I.B. through the International Max Planck Research School for Chemistry and Physics of Quantum Materials, and H.L. through the ISIS facility development studentship program.Van-der-Waals (vdW) ferromagnets have enabled the development of heterostructures assembled from exfoliated monolayers with spintronics functionalities, making it important to understand and ultimately tune their magnetic properties at the microscopic level. Information about the magnetic properties of these systems comes so far largely from macroscopic techniques, with little being known about the microscopic magnetic properties. Here, we combine spin-polarized scanning tunneling microscopy and quasi-particle interference imaging with neutron scattering to establish the magnetic and electronic properties of the metallic vdW ferromagnet Fe3GeTe2. By imaging domain walls at the atomic scale, we can relate the domain wall width to the exchange interaction and magnetic anisotropy extracted from the magnon dispersion as measured in inelastic neutron scattering, with excellent agreement between the two techniques. From comparison with Density Functional Theory calculations we can assign the quasi-particle interference to be dominated by spin-majority bands. We find a dimensional dichotomy of the bands at the Fermi energy: bands of minority character are predominantly two-dimensional in character, whereas the bands of majority character are three-dimensional. We expect that this will enable new design principles for spintronics devices.Publisher PDFPeer reviewe
    corecore